
Safe Chicken
Release 0.1.0

Claudio Nold

Mar 06, 2021

CONTENTS

1 Table of Contents 3
1.1 Overview . 3
1.2 Door Control Hardware . 4
1.3 MQTT Broker Docker Setup . 6
1.4 Raspberry Pi Base Setup . 8
1.5 Application Setup . 9
1.6 Functions . 11
1.7 Raspberry Network Setup . 11
1.8 Backup and Restore . 12
1.9 Web Application . 13

2 Indices and tables 15

i

ii

Safe Chicken, Release 0.1.0

So what is Safe Chicken?

• a Raspberry Pi controlling a chicken door electronics so they are safe at night

• the door can be opened or closed according to:

– sunrise & sunset (calculated)

– static time

– force command (web app open/close buttons)

• the web application helps checking the current state of the door and allowing some user commands

• the output is just a relay signal to open and close the door

• the door motor and the motor electronics are not part of this project; this setup just controls the relay signals
(and two LEDs for displaying the status)

• uses an MQTT broker which runs on your NAS or a home server (but could also run on the Raspberry itself)

• allows unstable WLAN connections from the Raspberry to the home network

Get Safe Chicken on GitHub.

CONTENTS 1

https://github.com/ClNo/safe-chicken

Safe Chicken, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Overview

So the main components are these:

So which software parts run where?

3

https://github.com/ClNo/safe-chicken

Safe Chicken, Release 0.1.0

1.2 Door Control Hardware

1.2.1 Parts

Table 1: Hardware Components
No Part Name Usage
1 Raspberry 3 or 4 with power supply door controller
2 M5Stack Mini 3A Relay Unit U023 door open relay
3 M5Stack Mini 3A Relay Unit U023 door close relay
4 M5Stack Hall Sensor U084 magnetic sensor for door closed
5 M5Stack 1 to 3 HUB Unit U006 sensor cable extension
6 M5Stack Unbuckled Grove Cable 50cm A034-C sensor cable extension
7 Adafruit Jumperset 40 wires male/female, 15cm Raspi GPIO connection
8 orange LED 11 mA + resistor 82 Ohms automatic is working (= time synced)
9 green LED 11 mA + resistor 82 Ohms MQTT connection to broker working

4 Chapter 1. Table of Contents

Safe Chicken, Release 0.1.0

1.2.2 Connections

Raspberry GPIO connection:

This I/O configuration can be found on the Python/Raspberry side as config.json:

{
"io": {

"out_ready_led": 4,
"out_network_status_led": 17,
"out_open_command": 5,
"out_close_command": 6,
"in_door_closed": {"pin": 25, "active_state": true},
"command_out_pulse_time_s": 2

}
}

1.2.3 Outdoor Case

The Raspberry is enclosed in a case which is waterproof so there will not be any condensed water. It’s good enougth
to control the relays.

1.2. Door Control Hardware 5

Safe Chicken, Release 0.1.0

1.2.4 Electrical Considerations

Some notes about the electrical possibilities and limitations of the Raspberry 3+4:

• the GPIO devices must not consume more than 50 mA altogether

• one single GPIO output must not consume more than 16 mA

• Some outputs have a pullup and others have a pulldown behavior. If we choose the wrong behavior the startup
or a reboot of the system lets the output relays switching unexpectedly. A pullup output sets the output to high
until the application has been started which could be a big problem. For this project this means that the door
will open or close on each startup which is an unwanted operation of the door.

• So the relay outputs have to be connected to GPIO 5 and 6 which have a pulldown resistor. A reboot of the
system will not lead to an unwanted switch of the relays.

• GPIO power considerations this project:

– Estimated limiting resistor for testing: (3.3V (measured output) - 1.7V (typical LED voltage))/20mA =
80Ohms

– Voltage measurement of the used LED (limiting resistor 82Ohms): I=11mA (measured), R=82Ohm =>
U=R*I=82Ohm*0.011A=0.9V (limiting Resistor)

– so a limiting resistor of 82 Ohms fits here for both LEDs used.

– Relay coils: nominal power=0.2W, resistance=125Ohms => I=U/R=3.3V/125Ohms=26.4mA

Note: The coil current consumption is too high (26.4mA instead of 16mA) but it’s only for 2 seconds so this should
damage nothing.

1.3 MQTT Broker Docker Setup

1.3.1 Docker Guest OS

Docker eclipse-mosquitto

version 1.6, no SSL because of certificates

1.3.2 Host Persistent Directories

Make directory for /Container/eclipse-mosquitto-16

Create following directories in it:

config
data
docroot
log

Create an initial configuration in config/mosquitto.conf:

persistence true
persistence_location /mosquitto/data/
log_dest file /mosquitto/log/mosquitto.log

(continues on next page)

6 Chapter 1. Table of Contents

Safe Chicken, Release 0.1.0

(continued from previous page)

listener 9001
protocol websockets
http_dir /mosquitto/docroot

1.3.3 Container Configuration

Name: eclipse-mosquitto-2020 Command: /usr/sbin/mosquitto -c /mosquitto/config/mosquitto.conf Entrypoint:
/docker-entrypoint.sh CPU Limit: 10% Memory Limit: 1200 MB

Container Hostname: mqtt-16

Network, exposed ports:

• for MQTT protocol: QNAP-Host: 1883, Container: 1883, TCP

• for Websockets: QNAP-Host: 9001, Container: 9001, TCP

Shared Folders:

• Volume from host:

– /Container/eclipse-mosquitto-16/config => /mosquitto/config

– /Container/eclipse-mosquitto-16/data => /mosquitto/data

– /Container/eclipse-mosquitto-16/log => /mosquitto/log

1.3.4 HTTP server for the Web App

Note: The MQTT broker could also provide some files via http but is made too simple as the mime types cannot be
configured. So JS files will not be interpreted by the browers. Therefore an nginx is used here to provide the web app
files.

Docker OS used: offical nginx

Name: nginx-safechicken CPU Limit: 10% Memory Limit: 1200 MB

Container Hostname: nginx-safechicken

Network, exposed ports:

• for MQTT protocol: QNAP-Host: 9000, Container: 80, TCP

• Volume from host:

– /Container/http-safechicken/docroot => /usr/share/nginx/html

Set directory permissions:

cd /usr/share/nginx/html chown nginx:nginx . chown nginx:nginx -R ./*

1.3. MQTT Broker Docker Setup 7

Safe Chicken, Release 0.1.0

1.3.5 MQTT Client for Testing

Proposed client: https://mqtt-explorer.com/

snap install mqtt-explorer

Run it like this: mqtt-explorer

Name: <some name> Host: <your Docker host> Port: 1883

1.3.6 MQTT Manual Test

Using mqtt-explorer > Publish json

test1/topic1: {“value1”:11, “array1”: [“val1”, “val2”]}

Select “retain” to store it in a database so you could better test it.

1.4 Raspberry Pi Base Setup

1.4.1 OS Installation

Download the light version of the Raspberry OS from Raspberry Pi: Raspberry Pi OS Lite (size around 440 MB)

Write it on the SD card using some Flash Card Writer Tool (for instance USB Image Tool on Windows, or just “dd”
on Linux).

Then boot it and do the base settings directly via keyboard and HDMI screen as SSH is not active yet.

1.4.2 Base Setup

sudo raspi-config

• Localisation Options (Timezone is important)

• Interface Options: enable SSH

• change the default password for user pi

1.4.3 Disable Bluetooth

sudo systemctl disable bluetooth

1.4.4 Disable Serial Console

sudo systemctl disable hciuart
sudo apt purge bluez
sudo apt autoremove

8 Chapter 1. Table of Contents

https://mqtt-explorer.com/
https://www.raspberrypi.org/software
https://www.alexpage.de/

Safe Chicken, Release 0.1.0

1.4.5 Copy your SSH public keys

In order to avoid to always enter the Raspberry’s user password you could copy the public key. So from your Linux
workstation desktop do this:

ssh-copy-id pi@<IP of Raspi>

So now it should not be necessary to always enter your password on Raspi login or scp copy operations.

1.4.6 Misc

For convinience, the widely used shell aliases could be enabled:

nano /home/pi/.bashrc

Uncomment the already existing lines so they look like this:

some more ls aliases
alias ll='ls -l'
alias la='ls -A'
alias l='ls -CF'

To give out the processor temperature it is recommended to make an alias called temp:

nano /home/pi/.bash_aliases

alias temp='/opt/vc/bin/vcgencmd measure_temp'

After a re-login you can get the temperature by calling temp:

pi@raspberrypi:~ $ temp
temp=48.0'C

1.5 Application Setup

1.5.1 Copy to Raspi

Use the helper script to copy everything needed to the Raspi:

cd path/to/safechicken
raspberry/copy_to_raspi.sh <IP of your Raspberry>

This script also installs the package python3-venv and installs the virtual environment.

1.5. Application Setup 9

Safe Chicken, Release 0.1.0

1.5.2 Manual Start

cd ~/safechicken
source venv/bin/activate
python3 -m safechicken.main config.json

Check the console logs it it’s running or not and also the status LEDs.

1.5.3 System Auto Start

The following code is automatically executed in the copy_to_raspi.sh script, but could be done manually on the Rasp-
berry side:

sudo cp /home/pi/safechicken/raspberry/safechicken.service /etc/systemd/system/
sudo chmod +x /etc/systemd/system/safechicken.service
sudo systemctl daemon-reload
sudo systemctl enable safechicken.service

1.5.4 Safe Chicken Configuration

Set your home coordinates in the config.json file otherwise the open/close times according to sunrise/sunset times does
not match. Also set the MQTT broker host name according to your home network.

{
"time_control": {
"latitude": 47.0,
"longitude": 7.0,
"minutes_after_sunrise": 15,
"minutes_after_sunset": 30

},
"mqtt_client": {
"broker_hostname": "192.168.21.5",
"broker_port": 1883,
"client_name": "SafeChickenController"

},
"topic_conf": {
"sun_times": "safechicken/sun_times",
"door_sun_times_conf": "safechicken/door_sun_times_conf",
"door_prio": "safechicken/door_prio",
"static_time": "safechicken/static_time",
"force_operation": "safechicken/force_operation",
"command_out": "safechicken/command_out",
"last_commands": "safechicken/last_commands",
"door_closed_log": "safechicken/door_closed_log",
"door_lifesign": "safechicken/door_lifesign"

},
"controller": {
"force_time_expire_minutes": 180

},
"dispatcher": {
"start_action_delay": 2

},
"io": {

"out_ready_led": 4,

(continues on next page)

10 Chapter 1. Table of Contents

Safe Chicken, Release 0.1.0

(continued from previous page)

"out_network_status_led": 17,
"out_open_command": 5,
"out_close_command": 6,
"in_door_closed": {"pin": 25, "active_state": true},
"command_out_pulse_time_s": 2

}
}

1.6 Functions

1.6.1 Time Synchronisation

SafeChicken door control only works when the system time is correct and synchronized at least once. This can
manually be checked with the command:

pi@raspberrypi:~ $ timedatectl show -p NTPSynchronized
NTPSynchronized=yes

Or in Python:

import subprocess

command = ['timedatectl', 'show', '-p', 'NTPSynchronized']
res = subprocess.check_output(command)

if '=yes' in res.decode("utf-8"):
print('timesync working')

else:
print('timesync NOT working')

1.6.2 Output Signals

The door open and door close signals are both an impulse of 2 seconds each which let the door motor electronics
activate its motor on the requested side.

1.7 Raspberry Network Setup

1.7.1 Static IP

Which network interface do you use? Check it with ip r, then edit sudo nano /etc/dhcp/dhclient.conf.

Example in my network:

interface wlan0
static ip_address=192.168.21.12/24
static routers=192.168.21.1
static domain_name_servers=192.168.21.1

1.6. Functions 11

Safe Chicken, Release 0.1.0

1.7.2 WLAN

See WLAN setup

sudo raspi-config

• Change WLAN country option

If you have two networks in range, you can add the priority option to choose between them. The network in range,
with the highest priority, will be the one that is connected.

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

network={
ssid="HomeOneSSID"
psk="passwordOne"
priority=1
id_str="homeOne"

}

network={
ssid="HomeTwoSSID"
psk="passwordTwo"
priority=2
id_str="homeTwo"

}

1.8 Backup and Restore

Here you learn how to backup the flash card containing the operating system and your application in case it’s getting
lost and you want to restore it later.

Plug in your Raspberry’s flash card in a desktop PC, then start a partition manager like gparted or kdepartitionmanager.

Note: In this example, the flash disk is on /dev/sdb, /dev/sdb2 is the main partition.

1.8.1 Prepare Flash Card

First fill the unused space with zeros before you want to compress it.

sudo mkdir -p /mnt/work
sudo mount /dev/sdb2 /mnt/work
sudo dd if=/dev/zero of=/mnt/work/zero bs=1M
sudo rm /mnt/work/zero

Then shrink the partition to a minimum:

• First unmount the partition sudo umount /mnt/work

• start the partition manager

• in my example: shrink sdb2 from 16/32GB flash card size to around 2 GB

12 Chapter 1. Table of Contents

https://www.raspberrypi.org/documentation/configuration/wireless/wireless-cli.md

Safe Chicken, Release 0.1.0

1.8.2 Backup on Linux

Write the flash disk into a file; use gzip which compresses enough (using the compressor pigz).

sudo umount /mnt/work
time sudo bash -c "dd if=/dev/sdb bs=1M | pigz -9 > safechicken_16gb_image_raspberry_
→˓$(date -I).dd.gz"
size: around 623 MiB
sudo chown ${USER}:${USER} safechicken*

1.8.3 Restore on Linux

Warning: This may overwrite your harddisk if you choose the wrong disk! Here, it is /dev/sdb.

time sudo bash -c "pigz -dc safechicken_16gb_image_raspberry_DATE.dd.gz | dd of=/dev/
→˓sdb bs=1M"

1.9 Web Application

The web application’s functions are generally described in the index and overview pages already.

Here are some technical details:

• The Paho MQTT JavaScript client communicates to the MQTT broker running on the NAS

• Bootstrap UI components

• self-created simple communication adapter between MQTT and bootstrap html components

As the web app uses bootstrap containers it’s responsive and looks good on multiple devices. On a desktop it looks
like this:

1.9. Web Application 13

https://github.com/eclipse/paho.mqtt.javascript
https://getbootstrap.com/

Safe Chicken, Release 0.1.0

14 Chapter 1. Table of Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

15

	Table of Contents
	Overview
	Door Control Hardware
	MQTT Broker Docker Setup
	Raspberry Pi Base Setup
	Application Setup
	Functions
	Raspberry Network Setup
	Backup and Restore
	Web Application

	Indices and tables

